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We give a traveling-wave method for obtaining exact solutions of the modified nonlinear Schrédinger
equation iu, +eu,, +2p|ul®u+2iq(|u|*u), =0, describing the propagation of light pulses in optical
fibers, where u represents a normalized complex amplitude of a pulse envelope, ¢ is the normalized dis-
tance along a fiber, and x is the normalized time within the frame of reference moving along the fiber at
the group velocity. With the help of the “potential function” we obtained by this method, we find a fam-
ily of solutions that are finite everywhere, particularly including periodic solutions expressed in terms of
Jacobi elliptic functions, stationary periodic solutions, and ‘“‘algebraic” soliton solutions. Compared
with previous work [D. Mihalache and N. C. Panoiu, J. Math. Phys. 33, 2323 (1992)] in which two kinds
of the simplest solution were given, the physical meaning of the integration constants in the potential
function we give is clearer and more easily fixed with the initial parameters of the light pulse.

PACS number(s): 42.81.Dp, 42.65.Vh, 42.50.Rh, 03.65.Ge

I. INTRODUCTION

Optical solitons in fibers are pulses that propagate
without any change in pulse shape or intensity. Because
of their remarkable stability properties, optical solitons
are now at the center of an active research field of non-
linear wave propagation in optical fiber. This research
field started with the results obtained by Hasegawa and
Tappert [1], which showed that, under appropriate com-
binations of pulse shape and intensity, the effects of the
intensity-dependent refractive index of the fiber exactly
compensate for the pulse-spreading effects of group-
velocity dispersion. For the negative group velocity
dispersion or anomalous dispersion regime, the funda-
mental soliton is called a bright pulse, and the propaga-
tion of these bright solitons has been studied intensively
and verified experimentally [2]. For the positive group
velocity dispersion or normal-dispersion regime, the
theory [1] and numerical simulations [3] predict that the
solitons are dark pulses (i.e., a dip occurs at the center of
the pulse). The generation of the dark solitons in
monomode optical fibers was also demonstrated [4]. We
also mention the works of several active research groups
in the field of the theory of pulse propagation in optical
fibers in both the picosecond and femtosecond regimes
[5-23].

The propagation of the optical pulse in a monomode
optical fiber exhibiting Kerr-law nonlinearities is de-
scribed well by the following modified nonlinear
Schrodinger equation (MNLSE) [24-27]:

iu,+eu, +2plultu+2ig(lul?u), =0, e==*1, (1.1)

where u represents a normalized complex amplitude of
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the pulse envelope, ¢ is the normalized distance along the
fiber, and x is the normalized time within the frame of the
reference moving along the fiber at the group velocity.
The subscripts indicate partial derivatives. This equation
describes the propagation of picosecond light pulses
(p=1, ¢g=0, and e=1 for the anomalous-dispersion re-
gime and €= —1 for the normal-dispersion regime), and
in certain circumstances this MNLSE can be used to de-
scribe the propagation of femtosecond pulses in optical
fibers (see Refs. [21] and [22]). The case when p#0 and
q=0 was studied by the inverse-scattering method
[28-34] and an ansatz method [35-37]. Exact analytical
solutions for the higher-order nonlinear Schrédinger
equation were found by using Lie group theory [38]. In
Ref. [39], by using the inversing-scattering method, the
solution of the derivative nonlinear Schrédinger equation
(DNLSE), i.e., p=0, e=1, and ¢ =%, was given. We
mentioned that the MNLSE (1.1) can be reduced to the
following DNLSE:

iv,+v,, +illv|?), =0 (1.2)
via the transformation
5 —1/2 ep?
_ q |\ P, _EP”
u(x,t)=|—= exp |i X t
Ve Il @ H
X 2pVe
Xy |—=— t,t (1.3)
\/s q

A method for solving (1.1) in the picosecond region
(g =0) was found recently [35,40,41]. This method was
based on a linear relationship between the real and imagi-
nary parts of the complex pulse envelope u(x,t) with
coefficients which depend only on the ‘“‘time” variable ¢.
Exact analytical solutions for MNLSE (1.1) were given
in Ref. [42]. This method is based on a series of transfor-
mations of the pulse amplitude |u(x,¢)| and the variables
t and x. We notice that more integration constants were

1493 ©1995 The American Physical Society



1494

contained in solutions given in Ref. [42], and that the
physical meaning of them was ambiguous. It is especially
very difficult to fix these integration constants with the
initial conditions of the pulse.

In this paper, using the traveling-wave method, we give
a family of analytical solutions of the MNLSE (1.1) in the
fs region. It will be shown that all of the integration con-
stants in these solutions can be fixed easily with the initial
parameters of the pulse, and that the physical meaning of
them are very clear.

II. THE DESCRIPTION OF THE METHOD

For solving Eq. (1.1) we put the unknown function
u(x,t) in the traveling-wave form

u(x,t)=r(&expf{i[0(&)twt]} , 2.1

where £=x —ut, v is the wave velocity, r(£) is real ampli-
tude of the wave, 6(&) is the parameter of the phase
modification, and o is the frequency of the wave oscilla-
tion. By putting u(x,?) in Eq. (2.1) into Eq. (1.1), and
taking the real and imaginary parts of Eq. (1.1), we obtain
the following system of ordinary differential equations:

e(r@”+2r'0")y—vr' +6qrir'=0, (2.2)
(vr —2qr3)0’ —er@?+er” +2pri—or=0, (2.3)

where ¢’ is the first order derivative of r to &, 7"’ is the
second one, 8’ is the first order derivative of 6 to &, and
6" is the second one. There is the following first integra-
tion in Eq. (2.2):
er20'—vr?/2+3qrt/2=4/2 , (2.4)
i.e.,
O'=(+A4/r>—3qr*)/2¢ , 2.4")

where A is an integration constant. Setting Eq. (2.4')
into Eq. (2.3), we have

r'"+3q%r’/4—(qu—2ep)r3+(v2/4+qAd /2—cw)r

—A%/4r*=0. (2.5)
There is the following first integration in Eq. (2.5):
r'2/2+q*r%/8—(qu —2ep)rt/4
+(v?/4+qA/2—ew)r?/2+ A%/8r2+B=0, (2.6
ie.,
s'2+q%*—2(qu —2ep)s +(v2+2g A —4ew)s?
+8Bs— A%=0, (2.6)

where B is the second integration constant, and s =r?2,
In order to analyze different kinds of solutions of non-
linear differential equation (2.6'), we rewrite it as follows:

s”?+v(s)=0, 2.7
where
v(s)=q2%*—2(qv —2ep)s >+ (v2+2g 4 —4ew)s?
+8Bs—A4? 2.8)
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is a “potential function.” Therefore, Eq. (2.7) describes
the dynamics of a particle with a total energy zero and a
mass 2 in the potential well v(s). This potential is useful
for predicting the behavior of different kinds of solutions
of Eq. (2.6). The integration constants A and B in Egs.
(2.4) and in (2.6) which effect the shape of the potential
well can easily be fixed with the initial conditions »(£=0)
and 6'(£=0).

III. RESULTS AND DISCUSSION

In the following we show how to obtain the general
solution of the Eq. (2.7) and give all kinds of possible
solutions. For different kinds of root distributions of the
polynomial v(s), there are different kinds of solutions for
Eq. (2.7). Because s =r2>0 and all of the coefficients in
v(s) are real, we will discuss the real solution of the Eq.
(2.7) only.

(1) In the case when all four roots of the polynomial
v(s) are real.

(i) All four roots are equal. In this case “potential
function” v(s) can be rewritten as

v(s)=qXs—a)*. (3.1)
For this case v(s) is always positive or zero, so there is no
real solution in Eq. (2.7).

(ii) There is a single root and a triple root.

In this case “potential function” v(s) can be rewritten

as
vis)=gXs—a)s—pB). (3.2)

v(s)<0, when a<s<p, if a<pB, or when B<s<a, if

B <a. So there is a real solution for Eq. (2.7):

_Btalct+qla—PB)E/2]?
1+[c+gla—PIE/2]?

s(&) , (3.3)

where c is an integration constant. This is an “algebraic”
soliton solution. Under the condition of a,8>0, if 8> a
it represents a bright soliton; if B<a, it represents a dark
soliton.

For simplicity, we let ¢ =0. Setting (3.3) into (2.4"), if
a70 we have

€ A
0—90+—2 [U+_a —3qa |
__4& 9 _g_ Y
gavaB T |2 B a)\/ﬁ

—3earctan[qg(B—a)&] .

In the case of =0, s(£) in Eq. (3.3) and 6(&) in Eq.
(3.4) are simplified, respectively, as

B

1+¢°B6* /4
E)=60,+e(v+ A /B)E+e Ag?BE /24
—3earctan(gBE/2) .

s(§)= , (3.5)



51 TRAVELING-WAVE METHOD FOR SOLVING THE MODIFIED ... 1495

If welet 4=0,e=1,9g=1, and B= 16A2, then we have

4A
[14+16A%x —vt)?]'/?

u(x,t)=

Xexp{i[Oy+v(x—vt)/2

—3arctan[4A%(x —vt) ]+ wt]} , (3.7)
where 0, is another integration constant.

Now we discuss the possibility of dark soliton existence
in normal dispersion (¢=—1). For simplicity let 3=0
and ¢ =0in Eq. (3.2). We have

vis)=g%(s—a). (3.2")

Comparing (3.2") with (2.8), we have
|

2(vg+2p)/q*=3a>0, (3.8a)
(vV2+4w)/q*=3a?>0, (3.8b)
8B /q’=—3a’<0, (3.8¢)

where we have set 4 =0 and e=—1 in Eq. (2.8). It can
be seen from Eq. (2.6) that if the initial peak power and
the group velocity of the pulse are as appropriate as B <0
in Eq. (2.6), which satisfies Eqgs. (3.8a) and (3.8b), the
pulse can evolve into a dark soliton.

(iii) There is a double root s=a and two single root
s=p and y. In this case “potential function” v(s) can be
rewritten as

v(s)=qXs—a)(s—B)Ns—y), B>v . (3.9)

Because v(s) <0, if B>s >y, there is a real solution for
Eq. (2.7).
(@) If a> B or a <y, s(&) takes the following form:

s(§

- B+y[(B—a)/(y —a)]tan’[V(y —a)(B—a)(c +¢&) /2]
1+[(B—a)/(y—a)tan’[V(y —a)(B—a)c+q&) /2]

(3.10)

where y <s(£) <, when a and 8= 0. This represents a period soliton.

(b) If y <a < B, s(&) takes the form

B+y[(B—a)/(a—y)]tanh?*[V(a—y)(B—a)c +q&)/2]

s(§)=

It represents a bright soliton. Especially when a=0, we
obtain

Bsech’ [V —By(c+q&)/2]

s(8)= 1—(B/y)tanh?[V —By(c+q&) /2] (3.12)
In this case

v(s)=g%%s—B)Ns—y) . (3.13)
Comparing it with Eq. (2.8), we have

By =(*—4ew+294)/q%, (3.14a)

B+y=(qu—2ep)/q?, (3.14b)

A=0, (3.14¢)

B=0. (3.14d)

They show that only when €e=1 does the solution Eq.
(3.12) exist in Eq. (2.7).

Letting ¢ —0, in the condition of Eq. (3.14c), Eq.
(3.14d) and €=1, the soliton solution (3.12) reduces to the
following:

2 S
s(§)=i“"TP;"—sech2[\/4m—u2(c'+§)/2], (3.15)

which we can obtain from Eq. (2.7) directly by setting
qg=0, A=0, and B=0 in Eq. (2.8). It represents a
single-soliton traveling-wave solution of the NLSE:

iu, +u, +2plul*u=0. (3.16)

(iv) There are two double roots s =a and S3.

1+[(B—a)/(a—y)]tanh’[V(a—y ) (B—a)c+q&) /2]

(3.11)

[
In this case “potential function” v(s) can be rewritten
as

v(s)=g¢Us—a)(s—pB) . (3.17)
Because there is always v(s) >0 for any s value, it is im-
possible for a real solution for Eq. (2.7) to exist.

(v) There are two pairs of equal by opposite roots
s==ta and +f.

In this case the “potential function” v(s) can be rewrit-
ten as

v(s)=q2(s2—~a2)(s2—[32), a>f. (3.18)

Obviously, when 8<s <a there is a real solution [43] in
Eq. 2.7):

s(§)=pPnd(c +qa&, k) (3.19)
where c is an integration constant, and

nd(x,k)=1/V1—kZsn(x) (3.20)
is the Jacobi elliptic function, and in which

k*=1—p*/a* . (3.21)

(vi) There are a pair of equal but opposite roots s =*a,
and two single roots s =/ and y.

“Potential function” v(s) can be written as

v(s)=qAs?—a*)s—B)s—y) . (3.22)

For solving Eq. (2.8), in this case, we set
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=[(By +a>)+V (¥ —a* B —a?®)]/(B+y) (3.23)
p=[By+a®)—V (y =a> (B —a))]/(B+y),  (3.24)
2 2_ 2 2 __ 2
b1=2[(37+“ —Vy NB—a)] (3.25)
Viyr—a?) (B —a?)
_ 2 ___ 2
c1 _ 2By +a) +V iy — o) B —a?)] , (3.26)
Viyt—ah) (B —a?)
by=— [(y =)+ (B—ad)+2V(y =) —a?)] ’
Viy*—a?)(B—a?)
(3.27)
o = [P=a )+ (B —a)) 2V (Y’ — o) —a)]
2 V- (B —dd) ’
(3.28)
T=(6—A/(s—u), (3.29)
s=(A—uT)/(1—T), (3.30)
so we have
v(s)=q%s—p)%(b, T?+c, (b, T*+c,) . (3.31)
(a) When 82, y2> o2,
2__ 2 2__,2\2
bzz—m/ﬁ @’ +Vyl—a’) <0, (3.32)
Vi(y2—a) (B —a?)
2 __ 2 2 2\2
czz(‘/B @’ —Viyl—a) >0, (3.33)
Viy?—at) (B —a?)
I) By >0.
b, >0, ¢,;<0,
(3.34)
v(s)=gq% by(s —w) (T*—a’)(T*—b?),
where a’>=—c, /b, b>*=—c, /b,, and
ds/V —v(s)=dT /[q\V/ —b,b,V(T?—a®)(T*—b?)],
(3.35)

where we have supposed T >a, T > b. Substituting it into
Eq. (2.7) and using Eq. (3.30), we have

T(E)=b sn(c +aq&,k) (3.36)
s(E)=[A—ub sn(c +aq&,k)]/[1—bsn(c+aqf, k)],

(3.37)
in which c is an integration constant, and
k*=b%/a* (3.38)
(ID By <O.
b, <0, ¢;,>0,
(3.39)

v(s)=g%b,b,(s —u)(T?*—a’)(T?*—b?),

J

y(a—B)sn

(c+gVia—y)B—8)E/2,k)

where a?=—c¢,/b,, b*=—c,/b,, and
ds /V —v(s)=dT /[qV b b,V (T?—a®)(b*—T?)],

(3.40)

where we have supposed b > T >a. Substituting it into
Eq. (2.7) and using Eq. (3.30), we have

T(§)=1/[a dn(c+bg&, k)], (3.41)
s(&)=[ardn(c+bg&, k)—p]/[adnlc+bg& k)—1] .
(3.42)
¢ is an integration constant, and
k*=1—a’/b*. (3.43)
(a) When 82,72 < a?,
2_ 2 T2y
p= VBVl (3.44)
Viy'=a) B —a?)
(VB =24V 72— a2)?
o= VBtV ey (3.45)
‘/ 7/ _a BZ_aZ
() By >0.
b,>0, ¢, <0,
(3.46)
v(s)=q%by(s —w)XT?*—a’(T*—b?),
wherea2=—cl/b1,b2=—c2/b2,and
ds/V' =v(s)=dT /[qV bb,V (T*—a?)(b*—T?)],
(3.47)

where we have supposed b > T >a. The solution of Eq.
(2.7) is the same as Eq. (3.42).

(ID By <O.
b, <0, ¢,>0,
(3.48)
v(s)=gq2bby(s — ) T*—a*}(T*—b?),
where a’=—c, /b, b>= —c, /b,, and
ds /V' —v(s)=dT /[qgV b b,V (T*—a®)(T*—b?)],
(3.49)

where we have supposed T'>a,T >a. The solution is the
same as Eq. (3.37).

(vii) All four roots are different. In this case v(s) can
be rewritten as

v(s)=qXs—a)s—BNs—y)Ns—8), a>B>y>5.

(3.50)

When a>s>f or y>s>8, v(s) is integtive, and Eq.
(2.7) contain real solutions which can be represented as
follows.

(a) a>S>p.

stgy=Bla=r)—

(a—y)—(B—y)sn c+gV(a—y)B—8)E/2,k)

(3.51)
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_ Sla—y)+aly —8)sn*(c+qgVa—y)B—8)E/2,k)

(a—7y)

in which c is an integration constant, and
kE2=(a—B)y—8)/(a—y)XB—8)

(2) In the case when there are two real roots and a pair
of conjugate complex roots,

(3.53)

v(s)=qXs*+a®)s—B)s—y), B>y . (3.54)
i) B=y
v(s)=gXs*+a®)Ns—pB)?. (3.55)

In this case, it is impossible for v (s)<0. So there is no
real solution for Eq. (2.7).

+(y—=8)sn*(c+qV(a—y)B—8)E/2,k)

, (3.52)
[
o= Br=a?+V(By —a’’+4a’ /3+7/)2—2(B+7/
2 2V (By —a? ) +4a2(B+y )?
(3.64)
T=(s—A)/(s—u),
so we have
v(s)=g% by(s —p)T?*+c, /b (T*+c,/b,) .
(3.65)
(a) For ¢,b, >0, let ‘
a*=—c,/b,,b%>=c, /b, ,
A e (3.66)
© A—aunc[c+q(A—u)V b, b, (a®>+b2)E k]
S == —_———
1—anc[c+q(7»—,u)\/b1b1(az+b2)§,k]
where
k?=a%/(a’+b?),
R (3.67)
nc(x,k)=1/V'1—snx,k) .
(b) For ¢, b, <0, let
azz—cl/bl, bzz_C2/b2 y (368)
@ A—bund[c+g(A—p)V b b (a®+bP)E k]
S = p——————————
1—bnd[c+q(A—p)V b,b,(a>+b2)E k]
(3.69)
where
k*=1—b%/a?, (3.70)

in which we have supposed a > b.
(3) In the case when there are two pairs of conjugate
complex roots,
vis)=gs*+a?)(s*+B%) . 3.71)
In this case, it is impossible for v (s) <0, so there is no
real solution for Eq. (2.7).

i) y=—p.
v(s)=qXs*+a)s>—p3?) (3.56)
When s <,v(s) <0 and there is a real solution for Eq.
(2.7),
s(6)= ap sn c—l—qg\/az-H?2
\/az-i—Bz V1—k2n c-+—q§\/012-|-B2 k)’
(3.57)
in which
k*=p*/(a*+B*) (3.58)
(iii) ¥ P, supposing 3> 7.
For solving Eq. (2.7) in this case, let
2
a=Br=—a’=V - o)t dal(fty ) (3.59)
2(B+7)
2 2
= By —a*+V/( /37/ a®)P?+4a*(B+y)? ’ (3.60)
2(B+y)
2_
bI:By a?—V/( B)/ a?)? +4a’( /3+'y ’ (3.61)
2V (By —a?)?+4a*(B+y )?
2
o, =Br=a VA By~ HAakBry) L (5
2V/( (By —a 24012([3-*-‘)/)Z
p,=Br=c 2—V(By —a®)*+4aX(B+y ) —2(B+y)?
2V By —a2P+aai(B+y)? ’
(3.63)
[1] A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142

(1973); 23, 171 (1973).

[2] L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys.
Rev. Lett. 45, 1095 (1980).

[3]1 K. J. Blow and N. J. Doran, Phys. Rev. Lett. 107A, 55
(1985); W. J. Tomlinsion, R. J. Hawkins, A. M. Weiner, J.
P. Heritage, and R. N. Thurston, J. Opt. Soc. Am. B 6,

329 (1989).

[4] P. Emplit, J. P. Hamaide, F. Reyuaud, C. Froehly, and A.
Barthelemy, Opt. Commun. 62, 374 (1987); D. Krokel, N.
J. Halas, G. Guiliani, and D. Grischkowski, Phys. Rev.
Lett. 60, 29 (1988); A. M. Weiner, J. P. Heritage, R. J.
Hawkins, and R. N. Tomlinson, ibid. 61, 2445 (1988).

[5] H. G. Winful, Appl. Phys. Lett. 46, 527 (1985).



1498 XU BINGZHEN AND WANG WENZHENG 51

[6] D. Anderson and M. Lisak, Phys. Rev. A 32, 3270 (1985).

[7]1 D. N. Christodoulides and R. I. Josph, Appl. Phys. Lett.
47, 76 (1985).

[81 M. J. Potasek, G. P. Agrawal, and S. C. Pinault, J. Opt.
Soc. Am. B 3, 205 (1986).

[9] B. Crosgnani, A. Yariv, and P. Di Porto, Opt. Commun.
65, 387 (1988).

[10] S. Trillo, S. Wabnitz, E. M. Wright, and G. I. Stegeman,
Opt. Lett. 13, 672 (1988).

[11] A. D. Boardman and G. S. Cooper, J. Opt. Soc. Am. B 5,
403 (1988).

[12] K. J. Blow, N. J. Doran, and D. Wood, Opt. Lett. 12, 202
(1987).

[13] V. Vafanasyev, E. M. Dianov, A. M. Prokhorov, and V.
N. Serkin, Pis’'ma Zh. Eksp. Teor. Fiz. 49, 588 (1989)
[JETP Lett. 49, 675 (1989)].

[14] A. B. Aceves and S. Wabnitz, Phys. Lett. A 141, 37
(1989).

[15] C. M. De Sterke and J. E. Sipe, Opt. Lett. 14, 871 (1989).

[16] Y. Lai and H. A. Haus, Phys. Rev. A 40, 844 (1989); 40,
854 (1989).

[17] Yu. S. Kivshar and B. A. Malomed, Opt. Lett. 14, 1365
(1989).

[18] G. K. Newboult, D. F. Parker, and T. R. Faulkner, J.
Math. Phys. 30, 930 (1989).

[19] K. Hayata, K. Saka, and M. Koshbia, J. Appl. Phys. 68,
4971 (1990).

[20] Y. Kodama, J. Stat. Phys. 39, 597 (1985); Y. Kodama and
A. Hasegawa, IEEE J. Quantum Electron. QE-23, 510
(1987).

[21] M. J. Potasek, J. Appl. Phys. 65, 941 (1989).

[22] A. M. Kamchataov, Zh. Eksp. Teor. Fiz. 97, 144 (1990)
[Sov. Phys. JETP 97, 80 (1990)].

[23] F. Singer, M. J. Potasek, and M. C. Teich, Quantum Opt.
4, 157 (1992).

[24] N. Tzoar and M. Jain, Phys. Rev. A 23, 1266 (1989).

[25] D. Anderson and M. Lisak, Phys. Rev. A 17, 1393 (1983);
E. Bourkoff, W. Zhao, R. I. Joseph, and D. N. Christo-
doulides, Opt. Lett. 12, 272 (1987).

[26] K. Ohkuma, Y. H. Ichikawa, and Y. Abe, Opt. Lett. 12,

516 (1987).

[27] G. P. Agrawa, Nonlinear Fiber Optics (Academic, Boston,
1989).

[28] V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz. 61,
118 (1971) [Sov. Phys. JETP 34, 62 (1972)].

[29] J. Satsuma and N. Yajima, Prog. Theor. Phys. Suppl. 55,
284 (1974).

[30] M. J. Ablowiz, D. J. Kaup, A. C. Newell, and H. Segur,
Stud. Appl. Math. 53, 249 (1974).

[31] Solitons, edited by R. K. Bullogh and P. J. Caudrey
(Springer, Berlin, 1980).

[32] M. J. Ablowiz and H. Segur, Soliton and Inverse Scattering
Method (Society for Industrial and Applied Mathematics,
Philadelphia, 1981).

[33] F. Calogero and A. Degasperis, Spectral Transform and
Solitons (North-Holland, Amsterdam, 1988).

[34] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C.
Morris, Solitons and Nonlinear Waves (Academic, New
York, 1982).

[35] N. N. Akhediev, V. M. Eleonskii, and N. E. Kulagin,
Teor. Mat. Fiz. 72, 183 (1987).

[36] N. N. Akhmediev and V. I. Korneev, Teor. Mat. Fiz. 69,
189 (1986).

[37] N. Akhmediev and A. Ankiewicz, Phys. Rev. A 47, 3213
(1993).

[38] L. Gagon and P. Winterniz, J. Phys. A 21, 1493 (1988);
22, 469 (1989); L. Gagon, J. Opt. Soc. Am. A 6, 1477
(1989); M. Florjanczyz and L. Gagon, Phys. Rev. A 41,
4478 (1990).

[39]1 D. J. Kaup and A. C. Newell, J. Math. Phys. 19, 798
(1978).

[40] D. Mihalache and N. C. Panoiu, Phys. Rev. A 45, 6730
(1992).

[41] D. Mihalache and N. C. Panoiu, J. Math. Phys. 33, 2323
(1992).

[42] D. Mihalache, N. Truta, N.-C. Panoiu, and D.-M. Baboiu,
Phys. Rev. A 47, 3190 (1993).

[43] Wang Zhuxi and Guo Duenren, On Special Functions (Sci-
ence Press, Beijing, 1982), in Chinese.



